• We are available for your help 24/7
  • Email: info@isindexing.com, submission@isindexing.com


Paper Details

In Silico Prediction of Multi-Epitopes Vaccine from the Fusion F Protein Against Respiratory Syncytial Virus

In Silico Prediction of Multi-Epitopes Vaccine from the Fusion F Protein Against Respiratory Syncytial Virus

Marwa Karrar Hussein1 , Yassir A Almofti2 *, Khoubieb Ali Abd-elrahman3 , Mashair AA Nouri2 and Elsideeq EM Eltilib2

Journal Title:Journal of Clinical And Experimental Immunology
Abstract


Respiratory Syncytial Virus (RSV) is the major cause of the lower respiratory tract illness (RTI) in the elderly and in immunocompromised patients and children under 5 years of age. The disease causes deaths of approximately 500 infants each year. Conventional vaccine against the disease demonstrated immunological pitfalls to enhance T-helper responses and developed non-neutralising antibodies. This study aimed to predict epitopes from the fusion F protein of SRV that elicit the immune system and acted as safer efficacious vaccine. A total of 199 strains of RSV were retrieved from the NCBI database. The immune epitope database analysis resources (IEDB) were used for epitopes prediction against B and T cells. The population coverage was also calculated for the proposed epitopes against the whole world. Only two epitopes (441-YVSNK-445 and 440-DYVS-443) successfully passed all B cell prediction tools and demonstrated higher score in Emini and Kolaskar and tongaonker software. Thus were proposed as B cells epitopes. For T cells, a total of 177 epitopes were found to interact with MHC-I alleles. Among them four epitopes (53-YTSVITIEL-61; 250-YMLTNSELL-258, 198-YIDKQLLPI-206, and 450-VSVGNTLYY-458) were proposed since they interacted with the highest number of alleles and the best binding affinity to MHC-1 alleles. Moreover, a total of 397 core epitopes were found to interact with MHC-П alleles. However, the best four core proposed epitopes that interacted with higher number of MHC-II alleles were 217-IETVIEFQQ-226; 250-YMLTNSELL-258; 477-FYDPLVFPS-485 and 505-FIRKSDELL-513. Strikingly the epitope 250-YMLTNSELL-258 successfully interacted with both MHC-1and MHC-П alleles. The population coverage was 48.61% and 99.64% for MHC-I and MHC-II epitopes, respectively, and 100% for all T cells epitopes. Taken together ten epitopes successfully proposed as vaccine candidate against RSV. In vivo and in vitro clinical trials studies are required to elucidate the effectiveness of these epitopes as vaccine.